Enseñanza asistida por IA en la educación superior: retos y oportunidades

Autores/as

DOI:

https://doi.org/10.64923/ceniiac.e0003

Palabras clave:

Inteligencia artificial, Docencia universitaria, Educación superior, Bibliometría, ChatGPT, Políticas educativas, Competencias digitales

Resumen

La enseñanza asistida por inteligencia artificial en la educación superior ha propiciado un crecimiento significativo de la producción científica en los últimos años, impulsado tanto por las oportunidades pedagógicas como por los desafíos éticos, institucionales y tecnológicos que plantea. El objetivo de este estudio fue analizar, mediante un enfoque bibliométrico, la evolución, los principales contribuyentes, los temas centrales y los patrones de citación de la investigación sobre este tema entre 2017 y 2024. Se utilizó la base de datos Scopus y se procesaron 276 documentos tras un riguroso proceso de selección. El análisis se realizó con RStudio (Bibliometrix), VOSviewer y Excel. Los resultados muestran un aumento constante en las publicaciones, especialmente desde 2020, con una alta concentración en China y una fuerte influencia de autores y documentos recientes. Los temas más relevantes incluyen la integración de ChatGPT, la formulación de políticas institucionales y la autoeficacia docente. Las conclusiones destacan que, a pesar del crecimiento del campo, persisten desafíos en términos de profundidad conceptual, ética digital y formación del profesorado. Se recomienda fortalecer las redes de colaboración, promover líneas de investigación interdisciplinarias y desarrollar marcos críticos para la integración responsable de la inteligencia artificial en el ámbito universitario.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ruben Heli Medina, Universidad Rafael Belloso Chacín

Rubén Helí Medina

Bachelor’s Degree in Social Communication from Universidad Privada Dr. Rafael Belloso Chacín in Venezuela. E-mail: rubenmedinae04@gmail.com

Citas

An, Y., Yu, J. H., & James, S. (2025). Investigating the higher education institutions’ guidelines and policies regarding the use of generative AI in teaching, learning, research, and administration. International Journal of Educational Technology in Higher Education, 22(1). https://doi.org/10.1186/s41239-025-00507-3

Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020). Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies, 1(1), 377–386. https://doi.org/10.1162/qss_a_00019

Bottiglieri, L. I., Paz, M. F. I., & Ramallo, C. B. (2025). Educators in Transition: Unpacking Argentinean Teachers’ Attitudes Towards ai in Higher Education. Ikala, 30(1), 1–20. https://doi.org/10.17533/udea.ikala.355874

Burnham, J. F. (2006). Scopus database: A review. Biomed. Digit. Libr., 3(1), 1. https://doi.org/10.1186/1742-5581-3-1

Chan, C. K. Y. (2023). A comprehensive AI policy education framework for university teaching and learning. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00408-3

Chen, Z. (2022). Artificial Intelligence Evaluation for Mathematics Teaching in Colleges under the Guidance of Wireless Network. Mobile Information Systems, 2022. https://doi.org/10.1155/2022/3201004

Derviş, H. (2020). Bibliometric Analysis using Bibliometrix an R Package. Journal of Scientometric Research, 8(3), 156–160. https://doi.org/10.5530/jscires.8.3.32

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

Eager, B., & Brunton, R. (2023). Prompting Higher Education Towards AI-Augmented Teaching and Learning Practice. Journal of University Teaching and Learning Practice, 20(5). https://doi.org/10.53761/1.20.5.02

Farazouli, A., Cerratto-Pargman, T., Bolander-Laksov, K., & McGrath, C. (2024). Hello GPT! Goodbye home examination? An explor-atory study of AI chatbots impact on university teachers’ assessment practices. Assessment and Evaluation in Higher Education, 49(3), 363–375. https://doi.org/10.1080/02602938.2023.2241676

Feng, S., Zhou, Q., & Chen, S. (2025). Research on application strategies of artificial intelligence in intelligent teaching of ideological and political education in higher vocational colleges. Proceedings of 2024 International Conference on Artificial Intelligence and Future Education, AIFE 2024, 315–319. https://doi.org/10.1145/3708394.3708448

Gao, X. (2021). Role of 5G network technology and artificial intelligence for research and reform of english situational teaching in higher vocational colleges. Journal of Intelligent and Fuzzy Systems, 40(2), 3643–3654. https://doi.org/10.3233/JIFS-189399

Gong, D., & Xiao, P. (2024). Research on the enhancement of informatization literacy of design practice teaching faculty in applied colleges and universities based on OBE model in the context of artificial intelligence. Applied Mathematics and Nonlinear Sciences, 9(1). https://doi.org/10.2478/amns-2024-0971

Hou, H. (2024). Analysis and Innovation of Vocal Music Teaching Quality in Colleges and Universities Based on Artificial Intelligence. Applied Mathematics and Nonlinear Sciences, 9(1). https://doi.org/10.2478/amns-2024-1843

Khlaif, Z. N., Ayyoub, A., Hamamra, B., Bensalem, E., Mitwally, M. A. A., Ayyoub, A., Hattab, M. K., & Shadid, F. (2024). University Teachers’ Views on the Adoption and Integration of Generative AI Tools for Student Assessment in Higher Education. Education Sciences, 14(10). https://doi.org/10.3390/educsci14101090

Kulkanjanapiban, P., & Silwattananusarn, T. (2022). Comparative analysis of Dimensions and Scopus bibliographic data sources: An approach to university research productivity. International Journal of Electrical and Computer Engineering, 12(1), 706–720. https://doi.org/10.11591/ijece.v12i1.pp706-720

Li, F. (2021). Information Teaching Platform of College Physical Education Based on Artificial Intelligence Technology. Journal of Physics: Conference Series, 1852(2). https://doi.org/10.1088/1742-6596/1852/2/022030

Li, Z., & Wang, H. (2021). The effectiveness of physical education teaching in college based on Artificial intelligence methods. Journal of Intelligent and Fuzzy Systems, 40(2), 3301–3311. https://doi.org/10.3233/JIFS-189370

Liu, Z. L. (2025). Generative AI and Mobile Learning in Higher Education: Comparing Student and Faculty Perspectives on Employability Impact. International Journal of Interactive Mobile Technologies , 19(1), 34–45. https://doi.org/10.3991/ijim.v19i01.51325

Ma, L. (2021). An Immersive Context Teaching Method for College English Based on Artificial Intelligence and Machine Learning in Virtual Reality Technology. Mobile Information Systems, 2021. https://doi.org/10.1155/2021/2637439

Matos Mejías, C., & Carrasco Polaino, R. (2025). Implementation of Artificial Intelligence in the Journalism studies of the Faculty of Information Sciences of the Complutense University of Madrid. European Public and Social Innovation Review, 10. https://doi.org/10.31637/epsir-2025-1136

McAllister, J. T., Lennertz, L., & Atencio Mojica, Z. (2022). Mapping A Discipline: A Guide to Using VOSviewer for Bibliometric and Visual Analysis. Science and Technology Libraries, 41(3), 319–348. https://doi.org/10.1080/0194262X.2021.1991547

McGrath, C., Cerratto Pargman, T., Juth, N., & Palmgren, P. J. (2023). University teachers’ perceptions of responsibility and artificial intelligence in higher education - An experimental philosophical study. Computers and Education: Artificial Intelligence, 4. https://doi.org/10.1016/j.caeai.2023.100139

Meyer, D. Z., & Avery, L. M. (2009). Excel as a Qualitative Data Analysis Tool. Field Methods, 21(1), 91–112. https://doi.org/10.1177/1525822X08323985

Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics, 106(1), 213–228. https://doi.org/10.1007/s11192-015-1765-5

Mukherjee, D., Lim, W. M., Kumar, S., & Donthu, N. (2022). Guidelines for advancing theory and practice through bibliometric research. Journal of Business Research, 148, 101–115. https://doi.org/10.1016/j.jbusres.2022.04.042

Nadim, M. A., & Di Fuccio, R. (2025). Unveiling the Potential: Artificial Intelligence’s Negative Impact on Teaching and Research Con-sidering Ethics in Higher Education. European Journal of Education, 60(1). https://doi.org/10.1111/ejed.12929

Neyeloff, J. L., Fuchs, S. C., & Moreira, L. B. (2012). Meta-analyses and Forest plots using a microsoft excel spreadsheet: step-by-step guide focusing on descriptive data analysis. BMC Research Notes, 5(1), 52. https://doi.org/10.1186/1756-0500-5-52

Popenici, S. A. D., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1), 22. https://doi.org/10.1186/s41039-017-0062-8

Pranckutė, R. (2021). Web of Science (WoS) and Scopus: the titans of bibliographic information in today’s academic world. Publications, 9(1). https://doi.org/10.3390/publications9010012

Ren, X., & Wu, M. L. (2025). Examining Teaching Competencies and Challenges While Integrating Artificial Intelligence in Higher Edu-cation. TechTrends. https://doi.org/10.1007/s11528-025-01055-3

Sheng, Y. (2025). Research on teaching reform and innovation in higher education based on artificial intelligence. Proceedings of 2024 International Conference on Artificial Intelligence and Future Education, AIFE 2024, 320–324. https://doi.org/10.1145/3708394.3708449

Shtawi, S., & Abd-Rabo, A. M. (2025). Ethics of digital citizenship in the age of AI in higher education from the viewpoint of faculty members. In Digital Citizenship and the Future of AI Engagement, Ethics, and Privacy (pp. 169–200). https://doi.org/10.4018/979-8-3693-9015-3.ch007

Tlais, S., Alkhatib, A., Hamdan, R., HajjHussein, H., Hallal, K., & Malti, W. E. (2025). Artificial Intelligence in Higher Education: Early Perspectives from Lebanese STEM Faculty. TechTrends. https://doi.org/10.1007/s11528-025-01061-5

Todeschini, R., & Baccini, A. (2016). Handbook of Bibliometric Indicators: Quantitative Tools for Studying and Evaluating Research. https://doi.org/10.1002/9783527681969

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3

Velázquez-García, L., Cedillo-Hernández, A., Colón-Vallejo, A., Del Pilar Longar-Blanco, M., & Cedillo-Hernández, M. (2025). AI-Based Applications Enhancing Computer Science Teaching in Higher Education. Journal of Information Systems Engineering and Man-agement, 10(2.0), 14–32. https://doi.org/10.52783/jisem.v10i2.920

Wang, M. (2021). Design of College Physical Education Teaching System Based on Artificial Intelligence Technology. Journal of Physics: Conference Series, 1852(4). https://doi.org/10.1088/1742-6596/1852/4/042005

Wang, P., Jing, Y., & Shen, S. (2025). A systematic literature review on the application of generative artificial intelligence (GAI) in teaching within higher education: Instructional contexts, process, and strategies. Internet and Higher Education, 65. https://doi.org/10.1016/j.iheduc.2025.100996

Wang, Y., Liu, C., & Tu, Y.-F. (2021). Factors Affecting the Adoption of AI Based Applications in Higher Education: An Analysis of Teachers Perspectives Using Structural Equation Modeling. Educational Technology and Society, 24(3), 116–129. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110454980&partnerID=40&md5=c59227a37550a07ad8a4695ad30dcc82

Wang, Y., & Zheng, G. (2020). Application of artificial intelligence in college dance teaching and its performance analysis. International Journal of Emerging Technologies in Learning, 15(16), 178–190. https://doi.org/10.3991/ijet.v15i16.15939

Wei, J., Marimuthu, K., & Prathik, A. (2022). College music education and teaching based on AI techniques. Computers and Electrical Engineering, 100. https://doi.org/10.1016/j.compeleceng.2022.107851

Yang, C., Huan, S., & Yang, Y. (2020). A practical teaching mode for colleges supported by artificial intelligence. International Journal of Emerging Technologies in Learning, 15(17), 195–206. https://doi.org/10.3991/ijet.v15i17.16737

Zembylas, M. (2023). A decolonial approach to AI in higher education teaching and learning: strategies for undoing the ethics of digital neocolonialism. Learning, Media and Technology, 48(1), 25–37. https://doi.org/10.1080/17439884.2021.2010094

Zhang, X., & Chen, L. (2021). College English Smart Classroom Teaching Model Based on Artificial Intelligence Technology in Mobile Information Systems. Mobile Information Systems, 2021. https://doi.org/10.1155/2021/5644604

Zupic, I., & Čater, T. (2015). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629

Vol. 1 (2025): e0003

Archivos adicionales

Publicado

2025-07-22

Cómo citar

Medina, R. H. (2025). Enseñanza asistida por IA en la educación superior: retos y oportunidades. Ceniiac, 1, e0003. https://doi.org/10.64923/ceniiac.e0003